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On Short Surface Waves in Nematic Liquid
Crystals

ALEXANDER N. GOLUBIATNIKOV and ALEXEI G. KALUGIN
Mechanics and Mathematical Department, Moscow State University, Russia

A question of short gravitational wave propagation on incompressible liquid crystal surface
with anysotropic surface tension is discussed. Volume phase is described by Oseen model and
surface phase — by Rapini models. Isotropic viscosity is taken into account. The influence of
divergent member of free energy on surface stability is analysed.

Keywords: surface wave; nematic; stability

I. MAIN EQUATIONS AND BOUNDARY CONDITIONS

For nematic liquid crystal models anisotropy is described by the unit
vector n, which is called director. It may be connected with the av-
erage orientation of longer axis of molecules or more complex struc-
tures. We consider Oseen model for the elastic orientation energy
of director field [1]. This model has additional symmetry group [2]
which is connected with the independent director rotation. Then
medium equations are significantly simplified and it is possible to
solve completely the problem of small surface wave propagation.
The Oseen energy has the form

Fy = %KV;njV‘nj + %Ko (Vin;Vint — (Vin*)?) 1)

[27311/879



Downloaded by [University of California, San Diego] at 23:03 15 August 2012

880/[2732} ALEXANDER N. GOLUBIATNIKOV and ALEXEI G. KALUGIN

The second term in (1) is the divergent addend. It does not affect
on the internal orientation equations, but we need to consider it in
the boundary conditions.

The surface energy is given by Rapini form

Fs=a+ g (1-(n,b)?) (2)

where the unit vector b is the light orientation axis on the surface of
the nematic. The angle @ € [0, 7/2] between b and unit normal vec-
tor m is constant which depends on the media interface properties.
Also we suppose that «, 3 are constants, usually §/a < 0.1 [4].

It is possible to show [3] that Fis has minimum when n, b and m
are coplanar vectors. Then (2) is reduced to the expression

Fs=a+ g (1 — (sinQ4/1 — n2, + cos QIn,,.I)’)

where n,, = (n, m).

In this case incompressible fluid motion and director orientation
equations in Cartesian coordinates under homogeneous gravity field
g have the form

i dv* ij i
Viv' =0, o = Vi g (3
. . OFy y ) L1 o
l]::_lk _ (] i L* 1,7 IR
P Vin TV p& + 2ue”, € 2(Vv + V')
. . oFy
v) ikl S
(8 - nine) v, o7 =" (4)

where v' are the velocity components (i = 1,2,3), p is the pressure, p
is the medium density, &} is the Kronecker symbol and we also neglect
the director inertia. According to the Oseen idea we suppose that
dissipative effects are reduced to the isotropic viscosity with viscosity
coefficient y, €' is strain rate tensor. Here p, u are constants.

On the free surface, besides kinematic formula v,, = D, where D

is the normal surface velocity, we have conditions [3]
p,im,- = Va0i® = pami (5)

aFs
dn,,

o'y =2 Fg —n,m'
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(81— nin) (;’Vf Yomit g{fmj) ~0 (6)
where o%,, are the surface tension tensor components, p, is the exter-
nal pressure.

Surface covariant derivative V* (@ = 1,2) is calculated under
surface metric aqg = gijTi x5, where z}, = dz'/0u* are the tangent
vector components, u® are the surface coordinates.

Using (4), motion equations (3) are simplified to

v . o
pd—vt + Vi(p + Fv) = pAv' + pg'

So we can redefine pressure p, and orientation and motion equations
are separated, and velocity and director are connected by boundary
conditions only.

Due to the condition (6) relations (5) are reduced to (see [3])

€am = 0, (7)
2#’ €Emm +n Va (m) + Vln m
- dFs
- ba (FS L dnm) +pP—Pa (8)

where byg = m;V,zj is the tensor of surface second quadratic form.

II. SOLUTION OF THE LINEAR PROBLEM

In framework of given model we consider the small amplitude simple
harmonic wave propagation problem for fluid with infinite depth.
Let z,y, 2z be Cartesian coordinates. z-axis is directed contrariwise
g and z-axis is along horizontal part of wave vector k. We can write

n = (sin 0 cos p, sin # sin p, cosf)

Then for equilibrium state 6, = 0 and g are given constant angles
and py = p, — pgz.

In general case, when ) > 0, linearized equations (3), (4) for
perturbation have the form

Vil =0,  pvi+ V' = pAv’ 9)
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AG=0, Ap=0 (10)

Here v = 0v*/8t, p = p — po and A is the Laplace operator.
We research the solution of equations (9), (10) in the form

v' =Re(v'(2) E)),  p=Re(q(2) E)
6 = Q + Re(r(z) E), @ = o + Re(s(2) E)

with the free surface equation z = Re(Q E), where k is a real positive
number, @) is a complex constant and E = exp(i(wt — k z)).

Using linearized boundary conditions (6), (7), (8) and perturba-
tion damping conditions of all desired functions at z = —oo, we
receive (about the calculations of velocity and pressure see, for ex-
ample, [5])

uy = —i(Aexp(kz) + Bl/k exp(lz)), uz =0

u3 = Aexp(kz) + Bexp(lz), g = —ip Aw/k exp(kz)
r = Cexp(kz), s =1ysinger(z)

W, w
=—B(1+2—M€;), t=k,/1+‘7’;
Q=—£—li C= tkfBcosgyQ

2uk?’ T kK(1 — (v sinQ singg)?) + 8
v = Ko/K, B is an arbitrary complex constant.
Also the following variance ratio takes place

p(w® —kg) - a(k)K* = dpuk® (iw + (1 - U/k)uk?/p)  (11)

cospi Bk K
kK + 8/(1 — (v sin Q sin ¢g)?)
which determines the frequency value w.

where

d=a+

III. CASEQ =0

In special case @ = 0 for Oseen model linearized equations and
boundary conditions for p, v* and @ are separated and solved in-
dependently as in the previous section. Variable coefficient linear
equation for ¢

V; (sin? 8 Vip) = 0 (12)
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6 = Re(C exp(kz)E(t,z)), C = ikfBcospo Q/(kK + 3)

is solved after using the boundary condition at z =0
K(p, + Ko sin 3000,; =0 (13)

and damping one at 2 = —o0.
In main approximation, (12} has the form (v = arg C)

Pzz + Pz + 2k (tan(wt — kz + V) + ;) =0 (14)
We seek the solution of equation (14) as
p=vpotpi(2)p2(f), E=wt—-kz+v

Then as resuit of variables separation and ordinary differential equa-
tion solution we obtain

¢1 = exp(az), o= k(\/1+)\/k2—-l)

_acos(é(1+a/k)+b)
v2 = cos§

where A > 0, a, b are real constants.
From the condition (13) we have

2a0 K cos(§(1 + o/k) + b) + kKo|C|sinpe sin2f =0
From there o = k and finally
¢ = o — v|C|sinpp sin € exp(kz), 0 = |C| cos ¢ exp(kz)

It gives us the same formula for s(z) as in the general case (see
Section II). In the variance ratio (11) we are to set @ = 0.

IV. DISCUSSION OF RESULTS

The research of relation (11) shows that if |y| > 1/sin  hence for
suitable g the value of k exists always, then Imw < 0 and surface
is unstable. So, for surface stability it is necessary that

1

< —
i< sinf)
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Usually at the modelling it is supposed v = 0, then always s =
0 and for Ossen model any director rotation about vertical axis is
absent. In case cosyo = 0, when the wave goes perpendicularly to
horizontal projection of ng, both angle perturbations are equal to
zero.

We also give the frequency asymptotics for small and large
Reynolds numbers

|w|p , _.pg+ak?
p,k7_*0' w1 2Hk

l%!g—)oo: w2pk?/p+\Jgk+ak3/p

We can emphasize that the surface tension eflective coefficient &
depends on the wave number k.
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